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A theory of elasticity for piecewise-linear potentials is constructed assuming that the elastic potential consists of two terms, one 
of which depends on the hydrostatic pressure and other on the equivalent stress Z, which is a homogeneous function of the first 
power of the stress deviator. These assumptions limit the class of possible models compared with the previous assumptions [1], 
but they are more practi(.al since, when choosing a certain expression for X to determining the model, two experiments on uniaxial 
and volume extension-contraction are sufficient. The use of piecewise-linear expressions for ]g in some cases introduces certain 
simplifications, and some new properties of the models arise which do not occur for smooth convex functions of Z. Thus, under 
certain conditions it becomes possible for stress and strain surfaces of discontinuity to exist, characteristic surfaces occur, and 
problems arise regarding the uniqueness of the solution. The solution of these problems is considered in this paper. Copyright 
© 1996 Elsevier Science Ltd. 

The possibility of constructing a theory of elasticity for piecewise-linear potentials was suggested by 
Ivlev in [2]. The pos;sibility of constructing a theory of elasticity with a constant Poisson's ratio, in which, 
for uniaxial extension there is a linear relationship between the stresses and strains, was considered in 
[1]. 

Note that the use of piecewise-linear plasticity conditions has led to some progress in the theory of 
plasticity [3-5]. 

1. Small deformations of an elastic medium are related to the stresses as follows: 

e o = OUIOo o (1.1) 

We will consider isotropic media, in which the potential U depends only on the invariants of the stress 
tensor, while the cMnge in the volume is uniquely defined by the value of the first invariant of the 
stress tensor 0 = 1/3(01 + 02 + 03), where oi are the principal stresses. This condition will be satisfied 
if we postulate the following expression for the potential 

U(~/j)  = UI(O ) + U2( .Y, ) (1.2) 

where E is a homogeneous function of the first degree of the components of the stress deviator, i.e. 
E(t(ol - 0), t(02 - 0), t(03 - 0)) = tE(o 1 - 0, 02 - 0, 03 - 0). The surface Z = const in the space of 
the principal stresses 01, 02, 03 is represented by a cylinder with generatrices parallel to the straight 
line 01 = 02 = 03. This surface will be defined if the section of the cylinder by the deviator plane 01 + 
0 2 + 0 3 ----- 0 is specified. Without loss of generality we can assume that, for a uniaxial stresses Ol # 0, 
o2 = 03 = 0, we have the equation 

2 I 1 ) z  ol,- o2,- o3 =0, 

We will confine ourselves to considering normally isotropic media, i.e. such that a change in the 
sign of the stresses leads to a similar change in the sign of the strain. These assumptions lead to 
limitations on the choice of the functions Ul(O) and U2(Z), which must be even functions of their 
arguments. 
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Fig. 1. 

In Fig. 1 we show a section of the cylinder Z = const by the deviator plane, where the equation of 
the inner hexagon is 

r = maxl o i -  oj I = const 

and the equation of the outer hexagon is 

(1.3) 

Z = max[ oi - o [ = const (1.4) 

These hexagons are noteworthy in that all possible convex surfaces Z = const are situated between 
them. The circle shown in Fig. 1 corresponds to the classical theory of elasticity. The equation of this 
circle has the form 

X = ((01 - - 0 )  2 "1-(0 2 - - 0 )  2 + ( 0  3 - - 0 ) 2 )  ~2 = const  (1.5) 

If we postulate a linear relationship between the stresses and strains for omnidirectional and uniaxial 
stresses 

1 1 - v  o I ( 1 . 6 )  
e = 3  ( e l+e2+e3)=  E o, e l= -  f f  

the choice of expression (1.5) for Z leads to a linear equation of the theory of elasticity. At the same 
time, the use of expressions (1.3) or (1.4) for Z is of undoubted interest as an extremal version of the 
theory. 

Substituting (1.2) into (1.1) we obtain 

eij = 3U{(O)~ij  + U2(y') ~ (1.7) aa ij 

We have the following relations for the derivatives of the isotropic function X 

aX aY aX aX 
30ij = ~01 Ill j +--002 mira / +--303 nin j (1.8)  

where li, mi, ni are the direction cosines of the principal axes of the stresses tensor, which are related 
by the condition 

Ill j + mim j + nin/ = ~/j (1.9) 

If the surface Z = const is smooth, no difficulties arise in calculating the derivatives from Eqs (1.8). 



Equations of the non-linear theory of elasticity for piecewise-linear potentials 505 

If the stresses on the surface £ = const correspond to a corner point, the derivative must be taken in 
the generalized sense. Suppose the stresses correspond to the intersection of the smooth surfaces E = 
£1 and £ = £2. Then, the normal to the surface degenerates into a fan of normals, i.e. 

aZ /)Z 1 ~/)Z 2 = Or--U--.- + p 
~ 0  i Off i ~ ' 
ot~>O, [3~>0 (1.10) 

Since, by definition, £, £1, E2 are homogeneous functions of the first degree, then by Euler's theorem 
for homogeneous functions we have 

00---~ (~i = z  , " ~ i  Oi  = ~1 , "~'7-/ Oi = ~'2 (1.11) 

Convoluting (1.10) with 0 i and taking (1.11) into account, we obtain £ = ~ + 13Y-,2. Since on the 
surface considered £ = 5". 1 = Y--2, we have tx + [3 = 1, and relations (1.10) take the form 

/)£ aEi _, / )£2 - - = c t  + ( l - u ; - - ,  O~<~t~<l (1.12) 

The derivatives to the surface (1.3) at the corner points and the conditions for which the stresses 
correspond to the corner points, are shown in Table 1. Similar data are given in Table 2 for surface 
(1.4). 

The modes corresponding to the corner points, and the modes corresponding to the smooth parts 
of the potential, will hold in certain regions of  the strain, the boundaries of which are unknown in 
advance. For each mode we obtain a dosed system of equations, if we combine with relations (1.7)-(1.9) 

Table 1 

Mode: Constraints  ao'--~ /~o'-~2 3o--~3 

A Ol > o2 = 03 I -~t - l + c t  

B 02 < o l  = 03 ct - I  l - i t  

C 03 > ol = 02 -tz - I+ tx  1 

D oj < 02 = 03 -1 ot l--ct 

E 0 2 > ol = o 3 -ct I - l + c t  

F 0 3 < O I = O 2 @ I--0~ --1 

Table 2 

M o d e  Constraints  ~ol /)°2 /~--'~.~ 

a 0 1 - o = - o 3 + o > 0  I I I I 
• - + - o ~  - - - o L  - |  + - - o ~  

2 2 2 2 

b o l - a = - a 2 + a > O  I I I 
- - + - - ¢ {  - i + / ¢ ~  
2 2 2 2 

t' 0'3 -- ~ ---- --0'2 + O' > 0 [ --(It --| +~Ot | | 

2 2 2 2 

d ¢$3--1ff---- --Oi + ( I  > 0 / l I 1 - l+ - t t  - - a  - + - ¢ t  
2 2 2 2 

e 0' 2 --O = - -O  I + O  > 0 

f 0 2 - 0 = - 0 3 + 0 > 0  
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the equations relating the components of the stress tensor with the principal values, the expression for 
the components of the strains in terms of the displacements, and the equilibrium equations 

Oij = O l l i l  j + 0 2 m i r a  j + 0 3 n i n  i , e 0 = I//2 (u i , j  + ui ,  i ) (1.13) 

o0 , /+  F,. = 0 (1.14) 

Here u i are the displacements and Fi are the volume forces. Note that at the corner points of the 
surface Z the principal stresses are related linearly, which reduces the number of statistical functions 
required by one, but a new unknown function a arises as a compensation in kinematics, which has to 
be determined when solving the boundary-value problems. The modes on the arcs hold if the constraints 
given in the tables hold, and 0 ~< a ~< 1. Modes corresponding to the faces will occur if completely defined 
constraints are imposed on the principal stresses. 

For the hexagon E, chosen in the form (1.3), the 

AB:  Z = o  I - o 2 ,  

BC : Z = o 3 - o  2 , 
C D : Z = O 3 - O  I, 

DE : Z = 0 2 - 0  1 , 
EF:52 = 0 2 -03 ,  

FA : 52 = ol - 03 , 

following relations must be satisfied 

O 1 ~ 0" 2 ~ O 3 

O 3 ~ O I ~ O 2 

O 3 ~ O 2 ~ O I 

O 2 ~> 0 3 ~ O I 

0 2 ~ 01 ~ 0 3 

O I ~ O 2 /> O 3 

When Z is chosen in the form (1.4) the following 

3 
ab: Y. = ~(01 - 0 ) ,  

3 
bc:X = ~ ' ( -o2  +o) ,  

3 
cd : X = ~ ( o 3  - o ) ,  

3 
de : Y~ = ~ ( - o l  +o) ,  

3 
ef : Z - -~ ' ( -O  I +O), 

f a : Z  3 = "~ ( -o3  + o),  

- O 3 + O ~ O  I - O ,  

- 0 "  2 + O F  O I - O ,  

0" 3 - O ~ - O  I + O ,  

- O  I + O ~ O  2 - O ,  

- O  1 + O ~ O  2 - O ,  

- 0  3 + 0 9  O I - O ,  

relations must be satisfied 

- O  2 + a  ~ O I - O  

- O  2 + 0  ~ 0 3 - O  

0 3  -- O ~-~ - 0  2 + O 

- O  I + O ~ O  3 - O  

- O  I + 0  >~ 0 3 - O  

- O  3 + O  >~ O 3 - O  

The use of expressions (1.3) and (1.4) when solving boundary-value problems of the non-linear theory 
of elasticity leads to additional difficulties because of the need to choose the modes. Simplifications 
can be made in cases when the choice of mode can be made in advance or guessed, and also when the 
directions of at least one of the principal stresses are known. 

2. We will investigate the possibility that discontinuous solutions exist for piecewise-linear potentials. 
Suppose there is a surface ~ in the region V, in which the displacements are continuous, while the 

stresses and strains have a discontinuity. Using the geometrical conditions of compatibility [6] for jumps 
in the strains, we obtain the relations 

[e i j ]=~(Ei~l )v j  + E~l)vi), 
Ei (') = du + I dn - du ;  / dn (2.1) 

where u + and u~ are the displacements on different sides of the surface fl  and vi are the components 
of the vector normal to this surface. 

The condition of continuity of the stress vector on ~ (the condition of equilibrium) has the 
form 

[o 0 ] v / =  0 (2.2) 
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Fig. 2. 

It follows from (2.1) and (2.2) that 

(o~ - o~ )e~ + (o~ - o~)e/~ = [o(i ] [e l i ]  = [o 0 ]V.jU "(I) = 0 (2.3) 

Substituting the values of  the strains, calculated from (1.7) into (2.3), we obtain after reduction 

(o + - o-)(uf(o + ) - vf(o- )) + (x+ - x- )(u~ (x ÷ ) - u~ (x-)) + 

_-, aye(o;) .... ax(o~) 
+U~(Y-+)(t+o~-u,. ,  a--~--+ . u 2 ( 5 ~ - ) ( t - o ~ _ o i j  - o ~ )  ~)0~ = 0  (2.4) 

Since t+o + and O~ lie on one surface Z = g(o#), while Fo~ and o~  lie on the surface g = g(o~), the 
. o ~d . . . . conditions for the surface Z = const to be non-convex lead to the following mequalit,es 

ax(o~) ÷ ax(o~) 
- _%) ~ ( t÷o~  %) ~ ~> o, ( t - o ;  >I o (2 .5)  

The area of  the square, shown hatched in Fig. 2, is always positive if U~(o) is a monotonically increasing 
function of o. Hence it follows that 

(Uf(o +) - Uf(o-  ))(o + - o -  )/> 0 (2.6) 

where the equality in (2.6) is only obtained when o + = o-  or U{(o +) = U~(o-) (the latter only occurs 
for incompressible :materials). 

Similarly, we have for the monotonically increasing function U~(L) 

(U~ (X+) -  U~ (y7))(y+ _ yT) ~ 0 (2.7) 

where the equality holds when g + = X- (or U~(E +) = U~(X-) (the latter occurs for a reinforced material). 
It follows from (2.4)-(2.7) that the following equalities hold on the surface of discontinuity 

x ( o ~ )  = x (o ,~ ) ,  o + = o -  (2 .8)  

+ ax(o~) 
(o~ - o~)  ay(o;ao; ) = o, (o~ - o 0) ao~ = 0 (2.9) 

The condition for the surface X const to be convex has the form + - + + >~ = (o# - o#)az(oo)/ao# ~ 0, and 
hence the values of o~ for fixed o~ are such that the function 

a x ( o ; )  = 2;(o~j) - o~ a x ( o ;  ) i~x(o;) (2.10) 
ao; ao; ao; 
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has the minimum value in them. 
The minimum of the function B, with conditions (2.8), occurs if 

3o~ 3o----~.~ ÷ ¥ '  ~ +~280 = 0  (2.11) 

Convoluting (2.11) with ~i# we obtain ¥2 = O, convoluting (2.11) with o~ and taking (2.9) into account 
we obtain ¥1 = O, and from (2.11) we have 

3o~ 8o~ (2.12) 

It follows from (2.12) that the principal directions of the tensors o~ and o~ coincide on the surface 
of  continuity and, consequently, Eqs (2.9) can be written in a system of coordinates coinciding with the 
principal directions of the stress tensor in the form 

(o} -oT) ax(°~) az(o?) =0 
SoT =0, (o;-oD SoT (2.13) 

Equation (2.13) can be satisfied if the surface Y. = const has plane sections, i.e. g = aioi, a l  + a2 + 

a 3 = 0 ,  while o~and o/-lie in the same plane part. In this case, from the first relation of (1.13) and 
Eqs (2.2) and (2.8) we obtain the followingrelations for the jumps of the principal stresses 

[Oj ] l i l jv  j + [02 ] raimjv  j + [03 ] nlnjV j = 0 

[O] ] + [02  ] + [03 ] = 0 

(2.14) 

(2.15) 

It follows from (2.14) that 

a I [Oi.] + a 2 [02  ] + a3 [O 3 ] = 0 (2.16) 

[ot] l jv  j = 0, [O2]mjv j = 0, [O3]njv j = 0  (2.17) 

We conclude from (2.15) that the jumps of the two principal stresses cannot simultaneously vanish. 
To fix our ideas we will put [o2] ¢ 0, [o3] ;~ 0; then mjvj = 0 and njvj = 0. Hence ljvj = I and [ol] = 0. 
It then follows from (2.15) and (2.16) that a2 = a 3  = al/2. Hence, for compressible isotropic media 
(U~(o) ¢ 0), discontinuities of the stresses are only possible when the effective stress X is chosen in the 
form of the maximum reduced stress Y. = max I oi - o I. Here  the direction cosines of  the principal 
stresses are continuous, the effective principal stress (ol)  is continuous, the normal to the surface of  
discontinuity coincides with the direction of the effective main direction (ljvj = 1), and the jumps in 
the other two principal stresses are equal in value but opposite in sign. 

If the material is incompressible, we have Ui(o) = 0, and the condition (2.6) is satisfied for any o + 
and o-, while the jumps in the stresses satisfy conditions (2.16) and (2.17). 

Suppose [ol] = 0, [02] ¢ 0, [03] ¢ 0. From (2.16) and (2.17) we then have mivi  = nivi = O, livi ¢ O, 
a2[o2] + a3[o3] = 0. Hence, in an incompressible medium having a piecewise-linear potential, surfaces 
of  discontinuity of the stresses are possible on which one principal stress, directed along the normal to 
the surface of discontinuity, is continuous, while the principal stresses lying in the tangential plane 
undergo a discontinuity. 

Suppose [ol] = [02] = 0, [03] ;~ 0. From (2.17) we then have nivi = 0 and it follows from (2.16) that 
a 3 = 0. Consequently, if ~ = Ol - 02, a surface of discontinuity of the stresses is possible in an incom- 
pressible medium in which the maximum and minimum principal stresses are continuous, while only 
the intermediate principal stress, which lies in a plane tangential to the surface of  the discontinuity, 
undergoes a discontinuity. 

In all cases, the strains on the surface of discontinuity of the stresses are continuous, and consequently, 
the stresses on the surface of the discontinuity of the strains are continuous. 

If, on a certain surface S, the stresses correspond to a smooth part of  the function E, the deformations 
are continuous on the surface S. Hence, on the surface of discontinuity of the deformations, the stresses 
correspond to the corner points of the function E. In this case, relations (1.7) take the form 
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eiy = ~/~(ui,j + uj,i ) = ~ U:(o)Si/ + U2(~,) (ct ~ + (l -o~) ~Z21 (2.18) 
OOq J 

Using the geometrical conditions of compatibility and relations (1.8) we obtain from (2.18) 

(~O)Vj + ~')l)Vl ) = [a] U~ (Y)fAllil j + A2mim j + A3nin j ) (2.19) 

Convoluting (2.19) with 5# we obtain ~iO)vi = O. Then, after convolution with vi and (2.19) we obtain 

~/tl) = [0t]U~ (Z)(A~lilkv k + A2mimkv k + A3ninkV k ) (2.20) 

Substituting (2.20) into (2.19) we obtain that the following relations arc satisfied on the surface of 
discontinuity of the strains 

A~ (lil t - (liv j + ljvi)lkvk ) + A2 (min~ - (miv / + mjvi)m~v~ ) + 

+ A s (nin j - (n~vi + nyv i)n~v~) = 0 (2.21) 

Of the six relations (2.21) only three are independent, since after convolution with 6# and vj they are 
reduced to a single equation. We obtain independent relations (2.21) by projecting them onto lily, mimh 
ninj. They have the form 

A~ (1 - 2(/~v~)2) = 0 

A~ (1 - 2(m~v~ )2) = 0 (2.22) 

Aa(1- 2(n~v~)2) = 0 

Taking into acco~mt the fact thatA~ + A 2 + Aa = 0 and (lkVk) 2 + (mkvk) 2 + (nkVk) 2 = 1, we conclude 
that Eqs (2.22) can only be satisfied when 

Al = 0, (mkv k)2 = (nkVk)2 = JA, tkVk = 0 

A2=0, (lkvD2=(nkvk)2=~, mkVk=0 

AS = O, (lkvk)~ = (mkvk)2 = y~, nkVk = 0 

Hence, surfaces of discontinuity of the strains in non-linearly elastic media are only possible for 
potentials which depend on Z = max I oi - oj [ and which coincide with the surfaces of maximum shear. 

3. We will consider the surfaces of discontinuity of the derivatives of the stresses and strains. We will 
assume that the stresses, strains and first derivatives of the stresses are continuous on these surfaces, 
while the first deriwltivcs of the stresses and the second derivatives of the strains can have discontinuities. 
The geometrical ccmditions of compatibility can then be written in the form 

[o#,,]= "0~°)"*' [ui./, ] = ~/2~vjv~. (3.1) 

W~') = [ do# /dn l ,  ~[2~ =[d2ui / dn2].~[b2ui ] Oxj~.Xk ]VkV / 

From (1.7) and (1.13) we obtain that the following relations arc satisfied on the surface of discontinuity 

W~')v i = 0 (3.2) 

l._(2,_ _-(2, . ' I az ) (3.3) 
) 
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Convoluting (3.3) with $) and taking (3.2) into account we obtain 

2 

since u;(o) 2 0, G?(X) P o, U;(X) 3 0, ~q. (3.4) is satisfied if 

For convex surfaces Z = const we have the inequality 

where the equality and (3.6) only occurs when 5:) = 0. 
Hence, if the surface Z = const is convex, the relations of the non-linear theory of elasticity in the 

form (1.7) do not permit the existence of surfaces of discontinuity of the derivatives of the stresses and 
strains, i.e. i# = 0, Ut2) = 0. It can be shown that when the condition of convexity is satisfied, 
discontinuitie: of the deiivatives of the stresses and strains of any order are impossible, and the general 
equations of the non-linear theory of elasticity are elliptic. 

The direction bj will be called [6] the direction in which the surface Z is flattened, if the following 
equalities hold 

ax a22 
-A.,=Q, - 
%j ik+30,, 

Ai,Ak, = 0 (3.7) 

If a flattening direction occurs on the surface Z, the equality in (3.6) can also be satisfied when S$$) 
# 0, but sometimes the tensor $1 may coincide with the flattening tensor. We know [6], that for isotropic 
media the principal axes of the flattening tensor coincide with the principal axes of the tensor 04, and 
hence Eqs (3.7) can be represented in the form 

gA;=O, 
a% 

- AiA, = 0 
, il~iib j 

(3.8) 

(4 are the principal values of the tensor bj). The second condition of (3.8) is satisfied identically on 
the faces of the piecewise-linear surfaces X = const. 

Taking (3.8) and (3.5) into account we obtain that relations (3.2) and (3.3) will be satisfied if 

5;’ VjlkVk + a:“nI;n?~ VI + o~~‘)ll;,?~Vt = 0 (3.9) 

#I, +#I, +#I) =O 
I 2 3 

(3.10) 

a,o{” + a,?$‘) + a,$” = 0 -_ . (3.11) 

Comparing (3.9)-(3.11) with relations (2.14)-(2.16), we obtain that the conclusions reached for the 
surfaces of discontinuity of the stresses can be reformulated without change for the surfaces of 
discontinuity of the derivatives of the stresses and strains. 

If the stressed state corresponds to a singular point of the surface Z = const, we obtain, on the surface 
of discontinuity of the derivatives of the stresses and strains, 
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(3.12) 

Convoluting (3.1.2) with o-'~# ~) and using (3.2) we have 

3 

+ U~,(I;)g.~ [ aI;j 
aa  o 

ot Off#Offu t-)o#29o~.~'--[ 0 "-'kt + 

~0  (3.13) 

Assuming that the condition ]E 1 = ~ holds on both sides of the surface of discontinuity, we 
obtain 

I ~Z] 3Z.,'~_o) 
~ J O  0 =0 (3.14) 

Taking into account the fact that 0 ~< ot ~< 1, we obtain from (3.13) and (3.14) 

U{'(o)~ ") = 0 

3ffijao,t "-'~i ,-,kt ao~i~o,i ,.,~i ,-,la = ooi----~ ~i 3o~i u0 = 0 (3.15) 

From the conve:dty condition we obtain that on the surface of discontinuity o--~/j 1) = 0. 
Conditions (3.2) are then satisfied, and (3.12) can be written in the form 

I~ (U'/(2)Vj + UJ2)Vi) = U~ ( Z)-~(I) ( A;liIA + A2mim j + A3nin j )  (3.16) 

Comparing (3.16) and (2.20), we can conclude that the properties of the surfaces of discontinuity of 
the strain are identical with the properties of the surfaces on which the derivatives of the strains suffer 
a discontinuity. 

Hence, the general relations of the non-linear theory of elasticity for potentials, chosen as functions 
~. in the form (1.3) and (1.4), have characteristic surfaces. 

When E is chosen in the form (1.4), this will represent surfaces orthogonal to the principal stress of 
maximum modulus, while the stressed state on the surface of discontinuity will correspond to the faces 
of the surface Z = const. 

4. The traditional consideration of the theory of uniqueness is based on the equation of virtual work, 
which we will write in the form 

ffijeo d V  = I ffijuiNj dS + J (ff~ - oT)v ju ldS  + ~ FiuiaV 
V fl S V 

(4.1) 

Here V is the volume of the body considered, ~ is the surface which bounds it, Ni is the normal to 
f~, S is the surface of discontinuity of the stresses inside the volume V, o F and o~ are the stresses on 
the two sides of S, and vi is the normal to S outward from the "plus" region. Equation (4.1) is satisfied 
if ui, ei and aij satisfy the second equation of (1.3) and Eq. (1.14). 

For Eqs (1.7), (1.13) and (1.14) we will consider solutions which satisfy the boundary conditions on 
the surface f~, namely 

aljNj  =Pi(Xk)'  xk ~f~t,; uf =f/(xk), x k ~ u  (4.2) 

£ijkC~jraNmL k = p i ( x , ) ,  uiL i = f L ( x k ) ,  X k E ['2l, u 
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Here P&d, f;:W f&d9 Lit d x are specified functions on the corresponding surfaces, andp&i = 0 
on~,Q=$+QU+QP Conditions (2.2) are satisfied on the surfaces of discontinuity of the stresses. 

Suppose we have two solutions o.. (I), e?, u?) and a!?, e!?, u!*) which satisfy the above conditions. 
Then, the difference between these ‘!wo Solutions, acc&ddg to Eq. (4.1), must satisfy the equation 

(t$!) - &))(e!!) -e!?)) = 0 
rl ‘J v rl 

From Eq. (4.3) we obtain the conclusions which follow from an analysis of (2.3). Hence it follows 
that for convex smooth surfaces Z = const the distribution of the stresses and strains are uniquely defined. 
If the surface Z = const has plane parts, the stresses oii (‘) and o!? may differ in certain regions. Here 
X(0?)) = Z(a!?), a(‘) = o(*) for compressible media, the priniipal axes of the tensors a!.‘) and a!? 
coir!cide, the &incipal stresses a!.‘) and a!.*) may differ but lie in the same plane part of th! surfadZ 
= const, and the distribution of thye strains h this case will be unique. If the surface Z = const has corner 
points, the regions in which the stressed state corresponds to these points will be identical in both 
solutions, and in these regions the stresses will be identical. Consequently, for specified boundary 
conditions (4.2) the region Vcan be split uniquely into the sum of regions V,(V = XV,) so that in each 
region the mode corresponding to the specific faces and edges of the surface Z = const is satisfied. 

Relations (1.7) were treated above as equations of the theory of elasticity. We can regard them 
simultaneously as relations of the deformation theory of plasticity in the case of an active load. Moreover, 
the use of the equivalent stress in the form (1.4) turns out to agree better with experimental data 
presented in [7], than the relations of the classical theory when the surfaces Z are chosen in the form 
(1.5). 
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